Anthropogenic and natural nanoparticles in the environment – dynamics and interaction

<u>J. Thieme¹</u>, J. Sedlmair², S.-C. Gleber², J. Rieger³, J. Niemeyer⁴, J. Coates⁵

¹Brookhaven National Laboratory, NSLS-II,USA ²Institute for X-Ray Physics, University of Goettingen, Germany ³Harvard University, USA and BASF Ludwigshafen, Germany ⁴Department of Economic Plant Sciences, University of Goettingen, Germany ⁵University of California Berkeley, USA

Outline

- Nanoparticles in the environment
- Basics of X-ray spectromicroscopy
- X-ray spectromicroscopy of Nanoparticles
 - Imaging
 - Tomography
 - Elemental mapping
 - Spectromicroscopy

Studies performed at

ALS, Berkeley, USA (XM-1, Peter Fischer)
BESSY, Berlin, Germany (U41TXM, Peter Guttmann, U41STXM, self)
ELETTRA, Trieste, Italy (TwinMic, Burkhards Kaulich)
NSLS, Brookhaven, USA (X1A, Sue Wirick)

Looking into the Nanoworld using X-rays

Definition of Nanoparticles:

At least one dimension is below 100 nm in size

- 1D Nanofilms
- 2D Nanotubes
- 3D Nanoparticles

Most of the nanoparticles have sizes in the few nm – range.

Definition of Colloids:

At least one dimension is in the range of 1nm to 1 µm in size

Nanoparticles are a sub-class of Colloids.

Nanoparticles in the environment

Natural nanoparticles

organic: humic substances, coal, bacteria, fungi

inorganic: silicates, oxides, carbonates, metal sulfides

Anthropogenically introduced nanoparticles

organic: CNT, soot, fly ash

inorganic: TiO₂, SiO₂, ZnO

Effects:

Uptake by plants via roots

Adsorption to other particles, transport, subsequent resuspension and remobilization possible => circulation

Toxicity:

Toxic effect of nanoparticle itself (e.g. asbestos)
Interaction with toxic compounds => storage and reduction of impact as well as amplification

Soil structure

A. Quarz — org. S. — Quarz — B. Quarz — org. S. — Tonmineral C. Tonmineral — org. S. — Tonmineral (C1: Fläche — Fläche, C2: Kante — Fläche, C3: Kante — Kante D. Tonmineral — Tonmineral (Kante — Fläche)

- Oxides (large volume, small surface)
- Clay minerals (small volume, large surface)
- Organic substances (roots, bacteria, colloids, etc.)

(Scheffer, Schachtschabel – Lehrbuch der Bodenkunde)

Contrast

"Water Window"

(H. Wolter: Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen Ann. Phys. 6 (10), 94–114, 1952)

Between K-absorption edge of

Oxygen @ 2.28 nm (543 eV) and

Carbon @ 4.36 nm (284 eV)

⇒ no drying, fixation, or staining!

Some basics on X-ray microscopy

1. Resolution

X-radiation: $\lambda = 10 - 0.001$ nm

2. Refractive index

$$n = 1 - \delta - i\beta$$
 close to 1

3. High penetration depth sample thickness up to 10µm

- 4. Chemical contrast + water window (284-543eV)
 - elemental mapping at absorption edges
 - + additional information about binding forms via XANES
 - **→** Spectromicroscopy

Colloidal structures in soils and sediments

Soils and sediments in aqueous media

Images taken with

Images taken with TXM @ BESSY II

Resolution ≈ 25 nm

2 µm

Soils: Luvisol Gleysol

J.Thieme et al. (2007) Opt. Prec. Eng.

Harbor sediment, composed image

J.Thieme et al. (2010) J. Synchr. Rad.

Microbial influence on recent mineralization

Rothschönberger Stolln

2 µm

2 µm

Recent mineralization in Ernst-August-Stollen, Lauthental, Harz

Identified Bacteria: Gallionella ferruginea Lepthotrix ochracea

S. Dietrich et al. (1993) XRM IV

2 µm

 $2 \, \mu m$

Cement phases

C₃A +pore solution

 C_3S + pure H_2O

C₃S + polymer additive

C₃S +pore solution

All samples in aqueous media

Images taken with TXM @ BESSY II

Image 12 x 12 μm^2

Resolution ≈ 25 nm

Carbon nanotubes (CNT)

Study structural and chemical properties of CNTs and their interaction with other molecules using x-ray spectromicroscopy

pristine CNTs

A Schierz et al., Surf. Env. Pollut., 2008

SEM

CNTs + COOH -groups

dry

aqueous

Bacteria and clay dispersion

Destruction of associations of clay particles by soil mícrobes

TXM at BESSY

G. Machulla et al. (1998) XRM V, Springer

Interaction of soil colloids with cations

Evaluation of structure by fractal dimension

Cations:

a) Ca²⁺

 $D_F: 1.73 \Rightarrow 1.70$

 $D_F: 1.75 \Rightarrow 1.81$

Soil: Dystric Planosol

TXM at BESSY

Growth of cement phases

Cement phases imaged with TXM @ BESSY II

► Time

Sample: Tricalciumsilicate / Tricalciumaluminate + H₂O

Start with H₂O: Gel is formed, retards further activity

After some time: C-S-H phases start to form

Precipitation of Zn(OH)₂

Zn(OH)₂ particles in aqueous dispersion

TXM at BESSY II resolution approx. 25 nm E = 520 eV

Time spans over 50 minutes after the first mixing of ZnCl₂ and NaOH solutions.

J.Thieme et al. (2009) Springer

3D-structure of a flock of soil colloids

Aligned X-ray images,

Capillary diameter 8 µm

sample: Chernozem soil and microbial habitat

XM-1 at ALS

Computer generated slices, thickness 100 nm

sample: Chernozem, soil and bacteria

Thieme et al. (2003) Micron

Cryo tomography of humic substances

XM-1 at ALS

 $1 \mu m$

reduced reoxidized

Humic substances undergo a conformational change on changing their redox state
Influence on transport properties
binding capacities

⇔ chemical studies

Thieme et al. (2007) Env Sci Technol

Carbon distribution by elemental mapping

E = 280 eV

E = 310 eV

Soil colloids from Chernozem

STXM at BESSY

 $10 \times 10 \ \mu m^2$, $200 \times 200 \ pxl$, $50 \ nm \ step$

G. Mitrea et al. (2008) J. Synchr. Rad.

Interaction of CNTs with clay (aqueous)

COOH-CNTs with Na-montmorillonite in water:

Elemental Mapping for identification possible, as Na-montmorillonite has no organic content.

From NEXAFS-spectra it is possible to distinguish the CNTs, too.

J. Sedlmair et al. In preparation

Hematite associates with humics

The images show a humic substances agglomeration with hematites. scale bar: 5 µm, 0.12 µm/pxl

- bigger hematite clusters stick to the HS particle
- smaller hematites are spread out over the sample area.
 - → affinity Fe ← C

Stereo imaging and elemental mapping

Images taken at XM-1, ALS

Top:

left: E = 704 eV, below L-absorption edge of Fe right: E = 711 eV, above edge, hematite particles visible

Bottom: E = 711 eV tilting angle = 15° contact between clay and hematite particle visible

S Gleber et al. (2009) J. of Microscopy

Chemical and spatial information combined

- image sample at different energies ascending over an absorption edge
 =: record a "stack"
- evaluation with Stack_Analyze
 (C. Jacobsen et al., *J Microscopy*, **197**(2), 2000):
 - alignment
 - define reference intensity I₀
- each pixel of stack contains its own NEXAFS-spectrum with intensity I

Example of a **NEXAFS** spectrum at the C 1s absorption edge (284 eV)

J. Sedlmair et al. In preparation

Pristine and functionalized CNT

3 microns 288.88 eV 020jun046.nc: 288.88

Top image: Carbon nanotubes

Lower image: functionalized CNT 10 µm x 10 µm, resolution 50 nm

Spectrum shows C=O

J. Sedlmair et al. In preparation

Interaction of CNTs with soil sample (dry)

evaluation of stacks shows spectra of different components: Absorption / a.u. 0.0 2.0. Absorption / a.u. resulting image 280 290 Energy / eV 285 295 C-C, C-O 290 Eneray / eV 280 285 295 Absorption / a.u. Absorption / a.u. 0.2 aromatic, phenolic 280 285 290 Energy / eV 295 280 285 290 Energy / eV 295 Absorption / a.u. 0.4 0.2 0.1 Absorption / a.u. spectrum of 0.0 total cluster 290 Energy / eV 280 285 295 285 290 Energy / eV 280 24

OURHAVEN SCIENCE ASSOCIATES

X-ray microscopy – a tool to study the nanoworld

Summary:

2D-/3D- imaging Visualization
Elemental mapping => Dynamics
Spectroscopy Interaction

Benefit of XM-3 for these studies:

Enhanced spatial resolution ⇔ nanoparticles
Tomography for 3D information ⇔ agglomerations
Cryo-capabilities for organic structures ⇔ biofilms
Spectroscopic capabilities ⇔ interactions

