

Spin-wave interference patterns created by spin-torque oscillators

F. Macià¹, A.D.Kent¹, D.Bedau¹, P. Warnicke², D. Arena², F. C. Hoppensteadt³, P. Fischer⁴

¹Department of Physics, New York University

² Brookhaven National Laboratory (NSLS)

³Courant Institut for Mathematical Science, New York University

⁴ Lawrence Berkeley National Laboratory, Berkeley

Outline

• Imaging spin-wave patterns created by STOs

• Spin-wave diffusive patterns to implement memory

units and computation

Magnetic excitations in FM thin films

rf-fields

- Non-localized excitation
- Small amplitude
- Provide directionality

From Science (2008) **322**, 410

Magnetic excitations in FM thin films

Spin-polarized currents

→ Hysteretic Switching of M

→ Precession of M

J.A. Katine et al.; J. Grollier et al. ... (1000)

M. Tsoi et al.; E.B. Myers et al.; Y. Ji et al., ... (1998)

- Localized
- Large amplitudes excitations
- Provide NO preferred directions

Experimental Geometries

Spin transfer nano-oscillator (STO)

Nano pillars

In-plane radius $\sim 20-200$ nm Current $\sim 1-10$ mA Current density $\sim 10^6-10^8$ A/cm2

Imaging magnetic dynamics (XMCD)

Imaging magnetic domains

Fischer Z. Phys. B 101, 313-316 (1996)

Imaging of fast magnetization dynamics in magnetic nanostructures

Time-resolved measurements (XMCD) of the magnetic switching process

2nm Py

PRL 96, 217202 (2006)

• Reversal process not uniform: Few domains involved

Appl. Phys. Lett., Vol. 84, No. 17 (2004)

Dynamics: LLG + Spin-Torque (= LLGS)

$$\frac{\partial \mathbf{M}}{\partial \tau} = -|\gamma|\mu_0 \mathbf{M} \times \mathbf{H}_{eff} - \alpha \mathbf{M} \times (\mathbf{M} \times \mathbf{H}_{eff}) + \beta(\mathbf{x}) \mathbf{M} \times (\mathbf{M} \times \mathbf{m}_f),$$

 $\mathbf{H}_{\mathrm{eff}}(\mathbf{H}_{0},\mathbf{H}_{\mathrm{D}},\nabla^{2}\mathbf{M})$

- → Applied field
- → Demagnetizing field
- → Exchange field

 $\beta(x)$ defines contact sizes and locations and depends on the current intensity, the layer thickness and the spin polarization

Dynamics: Localized-delocalized modes

Static component decreases with the increasing oscillation amplitude.

$$m_z = \sqrt{1 - |m_\perp|^2}$$

FMR out-of-plane magnetization

$$\omega = \gamma (H - 4\pi M_{\text{eff}} m_z) \quad \omega$$

FMR in plane magnetization

$$\omega = \gamma \sqrt{H(H + 4\pi M_{\text{eff}} m_z)}$$

$$\omega$$

$$4\pi M_{\text{eff}} = 4\pi M_s - \frac{2K_{\perp}}{M_s}.$$

Patterning the spin-waves

Can they be imaged?

Modeling LLG for small perturbations

NO time-resolve imaging needed

Time-resolved measurements NEEDED

- Contact size controls the patterns $\lambda \sim 5r$
- diffusions ~ microns

Patterning the spin-waves

Spin waves interfere and enhance activity in certain locations

20 nm contacts separated 120 nm

- Contact size and distance allow pattern creations.
- Enhancement of activity in some regions

STO design: the magnetic film

Free layer: $(0.2\text{Co}|0.6\text{Ni}) \times \text{n}$

Spacer: 10 Cu

Fixed layer: 10 Py

$$\omega = \gamma (H_0 - 4\pi M_{\text{eff}} m_z)$$

$$4\pi M_{\text{eff}} = 4\pi M_s - \frac{2K_{\perp}}{M_s}.$$

Out-of-plane anisotropy

XMCD

STO design: the STNOs

NYU W

Imaging the magnetic film, XMCD

• We have fabricated STOs, measured excitations, and resolved magnetization patterns in 1nm Co films.

Memory and computation with spin-wave patterns created by STOs

Polychronous wavefront computation ←→ Computing with delays

Izhikevich, Int.Jour. of Bif. & Chaos (2009) 19:1733

Computation paradigms that considers the importance of spatial propagation and axonal delays

The key ingredients for PWC are

- A medium supporting interference patterns of propagating activity
- Transponders that can sense incident activity and respond by generating a propagating wave

Detection of the inter-pulse interval

Propagating patterns; Pulsing STOs

Propagating patterns; Pulsing the more-than-one STO

Transponders; Reverberating Activity

To use the spin-wave patterns for computation we need:

- Detecting spin-wave activity
- Responding by creating new activity

•It is basically an integrate-and-fire circuit, where a storage device accumulates charge that is discharged rapidly when a certain threshold level is achieved.

GMR-TMR

Transponders

Polychronous wavefront computation with STNO

1. Reverberating structures

Several configurations can maintain stable reverberating activity, and hence, serve as memory unit.

2. Look-up tables

Scalable structures, 3D!

Programming transponder arrangements having graded reverberating frequencies: look-up tables.

<u>Macià et al. arXiv:1009.4116</u>

Summary

- Fabricated STOs and studied their characteristics
- Imaged 1nm-thick Co Layer
- Modeling shows that spin-wave packets can be tailored in STO arrays
- Provides a means of implementing Polychronous Wavefront Computation. <u>Macià et al. arXiv:1009.4116</u>