Development of a membrane-based nanocalorimeter as an X-ray transparent heater stage

Chloe Baldasseroni, University of California Berkeley Materials Science and Engineering Department

ALS Users' Meeting Workshop Advanced Soft X-Ray Microscopy for Nanomaterials Sciences October 14, 2010

Outline

- Motivation
- Microfabricated heaters
- Our current design: nanocalorimeter
- Understanding temperature distribution
 - Experimental thermal characterization
 - Steady-state simulation
- New heater-stage design
- Outlook

Temperature dependent X-ray microscopy Motivation

- Probing of atomic and molecular properties during phase changes of materials
- Study of temperature activated phenomena
- Quench dynamics and metastable structures
- Heating constraints in microscopes:
 - space limited
 - geometry restrictions
 - heat confinement
- Advantages of microfabrication:
 - Small size: "heater on a chip"
 - Localized heating
 - Fast heating and cooling
 - Small power

Microfabricated heater devices

Device support beams

Pit

- MEMS sensor
 Suspended polysilicon
- Bolometer
 Silicon nitride spiderweb
- Thermal conductivity device
 Pt heater with suspended Si-N legs
- Calorimeter
 Metal strip on Si-N window

S. Semancik et al. / Sensors and Actuators B 77 (2001) 579-591 L. Gildemeister et al. / Appl. Phys. Lett. Vol. 74 No. 6 (1999) Sultan et al. J. Appl. Phys. 105, 043501 (2009) M. Zhang et al. / J. Mater. Res., Vol. 20, No. 7, Jul 2005 1802

Nanocalorimeter

- Free standing

 aSi-N membrane
 on silicon frame
 with patterned Pt
 heater and
 thermometers
- Sample area weak thermal link to silicon frame

Thickness 30 to 50 nm

Fabrication

- Process Flow
 - Thermal Oxidation
 - Low stress Silicon Nitride
 - Platinum
 - Si Etch

- Platinum:
 - Heater: Joule heating
 - Thermometer: R vs T calibration
- Temperature control/measurement by 4 probe configuration with current source and voltmeter in parallel

sample

X-ray transparent heater stage criteria

- Chemical and mechanical stability over 20 650°C temperature range
- Isothermal temperature distribution of sample area or control of temperature distribution

Need to understand temperature distribution for large increases of temperature and non-vacuum

Power dissipation in vacuum and in air

- Between vacuum and air: heat transfer through gas
- Average heater temperature: no information on local temperature distribution

Microscale thermography

$$\Delta R = \frac{\partial R}{\partial T} \Delta T$$

Experimental thermal map of nanocalorimeter in air Cth = $-2.4x10^{-4}$ K⁻¹

G. Tessier, S. Hole, and D. Fournier, Applied Physics Letter 78 16 2001

Different modes of heat transfer

Nonlinear steady-state heat equation

Use Matlab PDE toolbox (partial differential equation) to solve heat equation using a finite element method:

- 1. Describe geometry and boundary conditions
- 2. Build triangular mesh
- 3. Discretize PDE and solve

~300 000 triangles

Model parameters

Radiation

Infrared thermography: emissivity of each material

Model parameters - Convection

Simulation results

1% isothermal contours

Sample area temperature 3% gradient

4%

8%

Comparison simulation/experimental

Base temperature 295 K Convection h = 0.024 W/K.cm² 16% isothermal contours

Using the simulation to determine temperature map

Effect of reducing pressure

New heater stage design

- Double Pt spiral
- Heater width H Spacing between heater S

Proof of principle at XM-1

 Appearance and disappearance of FM in-plane domains in 30 nm Ni film (T_C = 358°C)

Using nanocalorimeter

- 400 C achieved
- Fast cooling, convenient for cycling

Collaboration with M.-Y. Im and P. Fischer

Conclusions and future work

- Good knowledge of thermal behavior of nanocalorimeter thanks to:
 - Experimental thermography
 - Heat transfer simulation model
- New improved heater stage design
- Thermal characterization of new design
- Temperature driven magnetic transitions (AFM to FM transition in FeRh)
- Open to collaborations for temperature dependent X-ray microscopy experiments

Acknowledgements

- Research group:
 - Frances Hellman
 - Catherine Bordel, David Cooke, Daniel Queen
- Collaborators
 - K. Maize, A. Shakouri (UC Santa Cruz)
 - M.-Y. Im and P. Fischer (LBNL)
- Staff and students at the UC Berkeley Microlab and Nanolab
- DOE funding